Query-Based Document Skimming: A User-Centred Evaluation of Relevance Profiling
نویسندگان
چکیده
We present a user-centred, task-oriented, comparative evaluation of two query-based document skimming tools. ProfileSkim bases within-document retrieval on computing a relevance profile for a document and query; FindSkim provides similar functionality to the web browser Find-command. A novel simulated work task was devised, where experiment participants are asked to identify (index) relevant pages of an electronic book, given subjects from the existing book index. This subject index provides the ground truth, against which the indexing results can be compared. Our major hypothesis was confirmed, namely ProfileSkim proved significantly more efficient than Find-Skim, as measured by time for task. Moreover, indexing task effectiveness, measured by typical IR measures, demonstrated that ProfileSkim was better than FindSkim in identifying relevant pages, although not significantly so. The experiments confirm the potential of relevance profiling to improve query-based document skimming, which should prove highly beneficial for users trying to identify relevant information within long documents.
منابع مشابه
RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملDocument Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملمدل جدیدی برای جستجوی عبارت بر اساس کمینه جابهجایی وزندار
Finding high-quality web pages is one of the most important tasks of search engines. The relevance between the documents found and the query searched depends on the user observation and increases the complexity of ranking algorithms. The other issue is that users often explore just the first 10 to 20 results while millions of pages related to a query may exist. So search engines have to use sui...
متن کامل